

2020 SETO PEER REVIEW

High-Temperature Thermal Systems: Part 2

New Materials Enable New Behavior

Levi J. Irwin, Ph. D., PMP

Technology Development Manager

Contracted to US Department of Energy

High-Temperature Thermal Systems: Part 2

A Diversified Portfolio

Alternative Markets and Opportunities

Materials and Components

- Thermal Energy Storage Emphasis on Chemical and Latent
- Receivers and Heat Exchangers Emphasis on Non-Metals and also on Additive Manufacturing

A Long-Term Investment

- Thermochemical Energy Storage
 - 2013 CSP ELEMENTS --> Present Day: Echogen and Southern Research Institute
- Latent Energy Storage
 - 2013 LPDP --> Present Day: Argonne National Lab
- Solar Selective Coatings
 - 2012 CSP SunShot --> Present Day: Dartmouth University
- Heat Exchangers
 - 2012 CSP Sunshot --> Present Day: Purdue

Diversified Portfolio: Alternative Markets/Opportunities

Require new materials and components

Materials and Components

Thermal Energy Storage (TES)

~8 Projects on time scales longer than Gen3

Different Storage Types...

Focusing on...

Materials and Components

Receivers and Heat Exchangers

~18 projects on time scales longer than Gen3

Different Strategies...

Focusing on...

Thermochemical Energy Storage

Southern Research Institute + Echogen: MgCO₃ + Direct Contact scCO₂

- 1. Develop Figures of Merit: Capacity; Endurance; Manufacturability; Cost
- 2. Invest Over Time: 2013 CSP ELEMENTS-->2015 CSP APOLLO-->2017 T2M 3
- 3. Capture Innovation

Structure of O²⁻ containing Ca-Aloxygen framework mayenite

Latent Energy Storage

Argonne National Lab: Salt-Infiltrated Expanded Natural Graphite Foam

- 1. Develop Figures of Merit: Capacity; Endurance; Manufacturability; Cost
- 2. Invest Over Time: 2013 LPDP-->2015 CSP APOLLO-->2019 Tech Commercialization Fund
- 3. Capture Innovation

- Modular
- Hermetically sealed limits corrosion problems
- to foaming processes

Figure 2-22. Heat transfer performances in the three types of LHTES configurations Current costs high due during the discharging process (cross-section view at the middle of the LHTES systems)

Solar Selective Absorbers

<u>Dartmouth University: Thermodynamically Stable Synthesize-in-Place Nanoparticle Coatings</u>

- 1. Develop Figures of Merit: Optical Selectivity; Endurance; Adhesion; Cost
- 2. Invest Over Time: 2012 Sunshot-->2013 LPDP-->2015 CSP APOLLO/SuNLaMP-->2018 FY18 FOA
- 3. Capture Innovation

Solar Selective Absorbers Continued...

$$FOM = \frac{\int_0^\infty (1 - R(\lambda)) I(\lambda) d\lambda - \frac{1}{C} \left[\int_0^\infty (1 - R(\lambda)) B(\lambda, T) d\lambda \right]}{\int_0^\infty I(\lambda) d\lambda}$$

Sample	# of samples	Average FOM	Standard Deviation	P-value for FOM>Pyromark
20 µm-thick Cu _{0.5} Mn _{1.5} Fe _{0.5} O ₄ -silicone on Inconel 625 tube section, OD=76 mm, 40 day-night cycles	4	750 C, C=1000 0.948, C=1000 (α=0.978 ±0.002; ε=0.489±0.002)	750 C, C=1000 ±0.002	<0.001;
Pyromark 1/2020	5/	750 C: 0.9006 for C=1000 (α=0.956±0.002; ε=0.892±0.002)	0.002 for C=1000;	<0.0001 for FOM>0.87

Receivers & Heat Exchangers

Purdue University: Cermet Heat Exchangers for 800°C scCO₂

- 1. Develop Figures of Merit: Corrosion Rate; Average Failure Strength; Cost
- 2. Invest Over Time: 2015 CSP APOLLO-->2017 Gen3 CSP -->2018 FY18 FOA
- 3. Capture Innovation

$$0.5Zr_2Cu(I) + WC(s) => ZrC(s) + W(s) + 0.5Cu(I)$$

387 MPa +/- 22MPa fracture strength from 4 point bending at 800°C (ASTM C1211-13)

A fired, porous, rigid WC plate (15 cm x 15 cm x 1.4 cm) with a serpentine millichannel pattern and internal headers

W/ZrC

W/ZrC --> coated W/ZrC --> Cr/Al₂O₃

Additive Manufacturing

- 1. Develop Figures of Merit: Corrosion; Strength; Fracture Toughness; Thermal Cond.; Cost
- 2. Invest Over Time: 2018 FY18 FOA--> 2018 FY19-21 Lab Call-->...
- 3. Capture Innovation

HEAT EXCHANGERS

Traditional Alloys

UC Davis

Figure 10. Optical micrographs showing the as-built microstructure and the solidification cracks on a Haynes 230 specimen #6 fabricated using 550 mm/s and 330 W

Fluid domains shown

Ceramics

Argonne National Lab

Roughness

Sintered@1380C

Conclusions

- High-Temperature Thermal Systems: Part 2 seeks to diversify the portfolio by pursuing alternative markets/opportunities
- It's focused on advanced materials that might not fit into the Gen3 timeline. These materials are applied in Thermal Energy Storage systems, Receivers, and Heat Exchangers
- Diversified investments nurtured over the long-term can pay good dividends
- 'On-boarding' new tech starts with good scientific practices

Thank you!

Levi J. Irwin, Ph. D., PMP

Technology Development Manager

Contracted to US Department of Energy

Levi.Irwin@ee.doe.gov